If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2+16p=0
a = 6; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·6·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*6}=\frac{-32}{12} =-2+2/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*6}=\frac{0}{12} =0 $
| 1/3y+3=1/9y | | -3.42×x=10.26 | | r=M/S | | 15-5(x+5)=-3x-(x+8) | | 1/2y+1/4y=2+10 | | 6p^2-25p=0 | | 4h-56+2h+44=180 | | 2(4t-3)+t=24t | | 16y^2=-16y-4 | | 1/8(20x+4)=5.7–10x | | 18(20x+4)=5.7–10x | | 2x/6+31/2=x/2 | | s-1/2=-1/4s+1/8 | | 7k+8=12k-17 | | 2w+3=17+4 | | 10x+10=9x-6 | | 4x+5=18-1 | | 12x^2-96x+144=0 | | 3y-7÷4=2y-8÷3 | | 3x-7÷4=2x-8÷3 | | 10x+10÷5=(-110) | | -10t^2+3t-80=0 | | -7x-x=1 | | -10t^2*3t-80=0 | | 2/3=73/5x-3/5 | | -5+10k=95 | | −(s+11)+2s−14=−38 | | -1/2=4/3u-6/5 | | 4/3(3x-2)-3/5(4x-3)=11/60+3x | | p-2=-3.6 | | 10(3^t)=800+10t^2 | | x/19=85 |